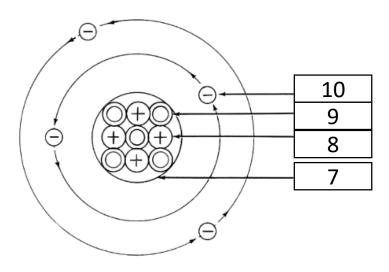


'I will take responsibility for my learning, be intellectually curious and work independently at school and at home.'

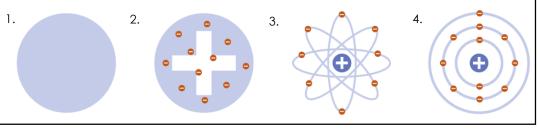
SCIENCE: CHEMISTRY


EXAM BOARD: AOA COURSE CODE: 8462 TOPIC TOPIC NUMBER ATOMIC STRUCTURE BONDING, STRUCTURE AND THE 2 PROPERTIES OF MATTER 3 **OUANTITATIVE CHEMISTRY** 4 CHEMICAL CHANGES 5 ENERGY CHANGES 6 RATE OF REACTION 7 ORGANIC CHEMISTRY 8 CHEMICAL ANALYSIS 9 CHEMISTRY OF THE ATMOSPHERE 10 USING RESOURCES

Tutor Group:

Name:

Chemistry topic 1: Atomic structure


1. Keywords						
1. Atom	The smallest possible piece of an element. Has a radius of 0.1nm (or 1x10 ⁻¹⁰ m)					
2. Element	A substance in which all the atoms have the same atomic number					
3. Isotope	Atoms with the same number of protons but different numbers of neutrons					
4. Molecule	Two or more atoms bonded together					
5. Compound	Two or more different atoms bonded together					
6. Mixture	At least two different elements or compounds together. Can be separated easily					
7. Nucleus	The centre of an atom. Contains protons and neutrons					
8. Proton	A positively charged particle found in the nucleus					
9. Neutron	A neutral particle found in the nucleus. Has no charge					
10. Electron	A negatively charged particle found in energy levels (shells) around the nucleus					

Particle	Relative mass	articles ative arge	Location							
Proton	1		+1	Nucleus						
Neutron	1		0	Nucleus						
Electron	0		-1	Shells						
Key										
atomi	atomic mass i c symbol ^{name} roton) numb		1 H hydroger 1	1						

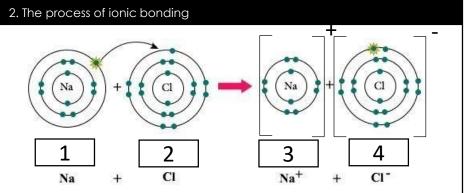
3. Using the periodic table									
Number of	Is the	Found by							
Protons	Atomic (proton) number	Smaller number on periodic table							
Electrons	Atomic (proton) number	Smaller number on periodic table							
Neutrons	Difference between the atomic mass and atomic number	Big number – small number							

4. History of the atom											
Discovery	Ву	Model	Diagram								
Solid particle called atom	John Dalton	Particle: solid spheres	1								
The electron	JJ Thompson	Plum pudding: positive 'cake' with negative 'plums'	2								
Nucleus	Rutherford	Nuclear: Positive nucleus surrounded by electrons	3								
Neutron	James Chadwick	Nuclear: Now with protons and neutrons in nucleus	3								
Energy levels (shells)	Niels Bohr	Planetary: Electrons now 'orbit' in different shells	4								

5. Elec	tron arrange	ment rules				8.	Layo	SU
1.	Always f	ill from the inside to the outside						
2.	The first s	hell can only hold 2 electrons	P	eriod	No. of shells		Gr	01
3.	The seco	ond and third can hold 8					1	
				1	1		Ļ	
	ory of the Perio						Li	E
Invente	ed by	Dmitri Mendeleev , a Russian scientist.		2	2		Na	N
Arrang	ed	In order of atomic mass , and by their chemical properties		3	3	ds	к	(
	vas special	Predicted the existence of other elements				eriods	Rb	;
abouti	Iţċ	not discovered, and left gaps for them in his table		4	4	م	Cs	E
Why w	as it used?	New elements were discovered that matched these gaps		<u>г</u>			Fr	F
				5	5		_	
								Þ

7. Properties – metals and non-metals										
Property	Metals	Non-metals								
Density	High (they feel heavy for their size)	Low (they feel light for their size)								
Strength	Strong	Weak								
Malleable or brittle	Malleable (they bend without breaking)	Brittle (they break or shatter when hammered)								
Conduction of heat	Good	Poor (they are insulators)								
Conduction of electricity	Good	Poor (they are insulators) apart from graphite								

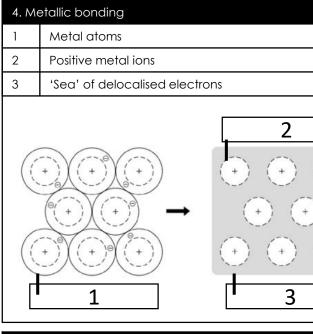
		8.	Layo	out c	of the	e pei	riodi	c tak	ole											
Period	No. of		Groups																	
	shells		1	2											3	4	5	6	7	0
1	1		ţ	ţ						н										Не
2	2		Li	Be											в	С	Ν	0	F	Ne
	Ζ		Na	Mg											AI	Si	Ρ	S	CI	Ar
3	3	ds	к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
		Periods	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
4	4	┛	Cs	Ва	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
5	5		Fr	Ra	Ac															
6	6			• 4	lkal	i me	etals				H	alo	gens	;						
				l T	rans	sitio	n m	etals	6		N	oble	e ga	ses						
7	7		^										-							
TL/DR:		Gr	oup)				1		2	3		4		5		6	7	7	8
Tells you	Group number Tells you're the		Electrons in outer shell				1	2	2	3		4		5		6	7	7	8	
number electron		Cł	narg	e of	ion			+1	+	2	+3	3	N/A	`	-3		-2	-	1	N/A
Period numberNumber ofTells you howcovalent bondsmany shells				1	1/A	N,	/A	N/J	Ą	4		3		2	1		N/A			
		N/	A =	not	appl	icat	ole (o	does	not	do i	†)									


9. Properties	. Properties – Groups 1 and 7													
Group 1 (I)	Melting point	Density	Reactivity	Group 7 (VII)	Melting point	Density	Reactivity	Group 0 (VIII)	Melting point	Density	Reactivity			
Lithium (Li)	Decreases down the	Increases down the	Increases down the	Fluorine (F)	Increases down the	Increases down the	Decreases down the	Helium (He)	Increases down the	Increases down the	INERT			
Sodium (Na)	group	group	group	Chlorine (Cl)	group	group	group	Neon (Ne)	group	group	(DO NOT REACT)			
Potassium (K)				Bromine (Br)				Argon (Ar)						
Rubidium (Rb)				lodine (I)				Xenon (Xe)						

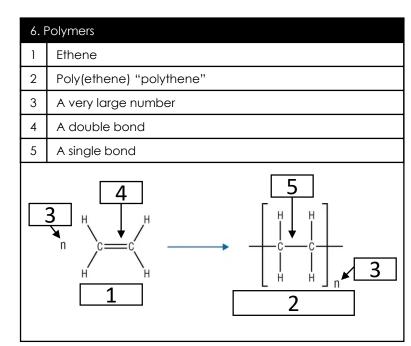
10. Transition metals (TRIPLE ONLY)									
Properties compared to group 1 elements	Other useful properties								
More dense	lons can have different charges								
Harder	Form coloured compounds								
Stronger	Good catalysts								
Higher melting points									
Less reactive									

11. Common separation techniques	
1. Chromatography Used to separate a mixture of dyes in ink.	
2. Filtration Used to separate insoluble solids from liquids (e.g. sand from water).	
3. Evaporation Used to separate a soluble salt from solution. The solution is heated strongly in an evapor basin until dry crystals are left.	ating
4. Crystallisation Used to separate a soluble salt from solution. The solution is heated gently in an evaporo basin until crystals form; the remaining liquid is filtered out.	ting
5. Simple distillation Is used to separate a liquid from a solution – e.g. water from ink. A condenser is used to hot gas until it forms a liquid.	cool
6. Fractional distillation Used to separate a mixture of liquids with different boiling points.	

Chemistry Topic 2: Bonding, Structure, and the properties of matter

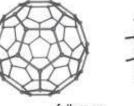

1. Keywords	
Ionic bond	When a metal donates electrons to a non-metal forming opposite charged ions that are attracted to each other
Covalent bond	A shared pair of electrons between two non-metals
Metallic bond	Positive metal ions in a 'sea' of delocalised electrons
lons	Charged atoms which have either gained or lost electrons
Electrons	Negative particles found in the shells of atoms
Group 0	The unreactive 'noble gases' all elements aim to get to group 0 electron configuration when they react
Dot and cross diagrams	The simplest way we show the bonding in atoms
Polymer	A long chain molecule made up of repeating monomers
Monomer	The small molecules that join together to make polymers
Delocalised	Electrons which are free to move anywhere
Alloy	A mixture of a metal and another element to change its properties

No	Name	Electron movement	Charge	Electron configuration	Does it have a full outer shell?
1	Sodium atom	0	0	2,8,1	No
2	Chlorine atom	0	0	2,8,7	No
3	Sodium ion	Lost 1	+1	2,8	Yes
4	Chloride ion	Gained 1	-1	2,8,8	Yes


(H)			
2H + O H		H-O I	electrons are in the overlap of the outer
	2H + 0	н	

	3. Th	ne process of covalent bonding
		Non metals share their outer unpaired electrons
	2	Now all outer shell spaces appear full
	3	There is no change in charge. They remain uncharged

+


+

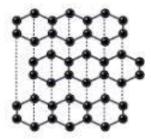
Property	Ionic compounds	Small covalent molecules	Giant covalent structures	Metals and alloys
Density	High	Low	High	High
Melting and boiling point	High	Low	High	High
Conduct electricity	Only melted or dissolved in water	No	No (apart from graphite)	Yes
Conduct heat	No	No	No (apart from diamond)	Yes
Brittle or malleable	Brittle	N/A	Brittle	Malleable
Examples	 Salt (sodium chloride) Magnesium Sulfate 	ChlorineOxygen	DiamondGraphiteSand	IronSteel

5. State sy	5. State symbols			
Symbol Meaning		Example		
(s)	Solid	Gold		
(I)	Liquid	Water		
(g)	Gas	Hydrogen		
(aq) Aqueous (dissolved in water)		Salt solution		

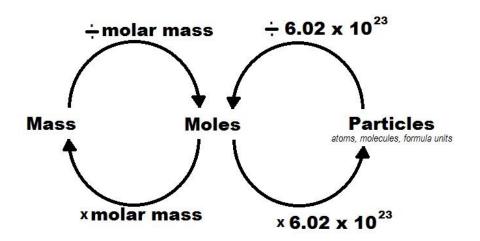
9. The structure and bonding of carbon					
Name of structure			Graphite	Graphene + Fullerene	
Number of bonds	4		3	3	
Any delocalised electrons?			yes	Yes	
Hardness	Very hard	b	soft	Flexible and strong	
Conduct electricity	No		yes	Yes	fulle
Melting point	Very high	1	High	High	Turk
Uses	GemsDrill bit	S	ElectrodesPencils	ElectronicsNanotubes	
10. Bulk and surfac	ce propertie	es of nand	oparticles (TRIPLE O	NLY)	_
Name		Size in n	anometres	Size in standard f	orm
Nanoparticles		1-100 nr	n	1x10 ⁻⁹ m to 1x10 ⁻⁷	⁷ m
Fine particles		100-250	0 nm	1 x 10 ⁻⁷ m to 2.5 x	: 10 ⁻⁶ m
Coarse particles ("dust")		2500nm	– 10000nm	2.5 x 10 ⁻⁶ m to 1 x	: 10 ⁻⁵ m
Uses of nanoparticles		Example	e		
 Medicine Electronics Cosmetics Sunscreen Deodorants Catalysts 		2. Wec 3. Anti- 4. Suns	vering drugs directly arable electronics aging creams creen without white pacterial action orne		

llerene

nanotube


graphene

	Size in nanometres	Size in standard form	
	1-100 nm	1x10 ⁻⁹ m to 1x10 ⁻⁷ m	
	100-2500 nm	1 x 10 ⁻⁷ m to 2.5 x 10 ⁻⁶ m	
ust'')	2500nm – 10000nm	2.5 x 10 ⁻⁶ m to 1 x 10 ⁻⁵ m	1
S	Example		1
	1. Delivering drugs directly to cells		4



Chemistry Topic 3: Quantitative chemistry

1. Keywords	
Conservation of mass	No atoms are made or lost during a chemical reaction. The mass before the reaction must equal the mass after a reaction IN A CLOSED SYSTEM
Closed system	A container which no chemicals can escape. Eg a sealed bottle
Relative formula mass (Mr)	Sum of relative atomic masses from periodic table
Balanced equation	When the sum of the Mr on the left equals the sum of the Mr on the right
Uncertainty	The percentage of a result that might be wrong. Shown from differences between repeats
Limiting reactant	The reactant which runs out first

3a. Concentration					
	$C = \frac{mass}{V}$				
С	Concentration	g/dm ³			
mass	mass	g			
V	volume	dm³ (litres)			

2. Moles (HT ONLY)	
Mole	The number of particles needed to make the mass equal the atomic mass
Avogadro constant	6.022x10 ²³ particles in 1 mole

3b. Concentration (HT ONLY)						
С	Concentration	g/dm ³				
m	mole					
V	volume	dm³ (litres)				

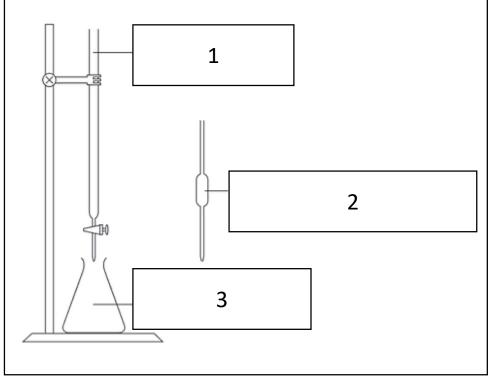
4. Percentage yield (TRIPLE ONLY)

%Yieldmass of actual
Maximum massx 100%YieldPercentage yield%mass of actualMass of product actually
obtainedgMaximum massThe theoretical maximumg

mass possible

6. Volume of gases (TRIPLE HT ONLY)		
1 mole of gas occupies 24 dm ³	If 20°C and 1 atmosphere pressure	
Equal moles occupy the same volume		

Atom economy (TRIPLE ONLY)


% Atom econom	$y = \frac{Mr of desired pro}{Sum of Mr for all rea}$	
% Atom economy	Percentage atom economy	%
Mr of desired product	Relative formula mass of the product you want	g/mol
Sum of Mr for all reactants	The total of all the react Mr added together	g/mol

Chemistry Topic 4: Chemical changes

1.Keywords		2.	REDOX							
Metal oxide	A compound formed when a metal ionically bonds to oxygen	С	hange	e In terms of		gen	n In terms of hydrogen		In terms of electrons (HT ONLY)	
Reactivity series	The order of elements in terms of their reactivity		vxidation	(Gaining oxyger	en Losing hydro		Losing hydrogen		ss of electrons
Acid	A substance that releases H ⁺ ions and has a pH below 7	R	Reduction Losing oxygen			Gaining hydrogen		(OIL) Gain of electrons		
Base	A substance that neutralises an Acid and has a pH above 7					_			(RI	G)
Alkali	A type of soluble base. A metal hydroxide. Releases OH- ions	3.	The reactivity	[,] series			Potassium Sodium	\sum		most reactive ↑
Neutralisation	When an acid reacts with a base to produce a salt and water		Category	Extro	icted by		Calcium Magnesium		1	
Carbonates	lonic compounds containing Carbon and oxygen		Highly reactive metals	Elec	trolysis	(Aluminium Carbon]		
Salt	lonic compound formed when acid and base react	2			Iting: ing with	1	Zinc ron Fin		2	
Soluble	A substance that dissolves			cark	J J		Tin _ead		2	
Insoluble	A substance that does not dissolve	3	Native metals		nd as gets of pure al	(H <i>ydrogen</i> Copper Silver			
Indicator	A substance that changes colour when pH changes		OTE: Hydroger nd used to ext			C	Gold Platinum	\geq	3	↓ least reactive
Electrolysis	Splitting up an ionic substance using electricity		netals not on th							
Molten	Turned to a liquid	1								
Solution	Dissolved in water	1								

4. Naming salts						
Acid used	Second part of salt's name					
Hydrochloric acid	chloride					
Sulfuric acid	sulfate					
Nitric acid	nitrate					

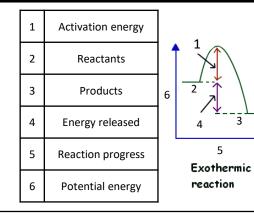
7. Titrations (TRIPLE ONLY)					
No.	Name	Function			
1	Burette	Measures amount of acid or base delivered to conical flask			
2	Pipette	Accurately measures the acid or base into the conical flask			
3	Conical flask	Holds the acid or base to be titrated and an indicator			

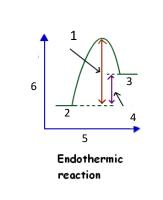
	Acidic			N	Neutral Alkaline			ne					
							(
0	1 2 γ Α	3	4	5 γ Β	6	7	8	9 7 C	10	11	12	13 γ D	14
Name			Level of ionisation in water										
А	Strong	g acid			Fully								
В	Weak acid			Partially									
С	Weak base			Partially									
D	D Strong base			Fully									

6. Equation for all neutralisations

 $H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_2O_{(I)}$

7. El	ectrolysis				
1	Cathode	The negative electrode			
2	Anode	The positive electrode			
3	Positive ion	Move to cathode			
4	4 Negative ion Move to anode				
5	Electrolyte	The ions that are being electrolysed			
	1				
	3	8 4			
	5				


8. Electrolysis of aqueous solutions					
Place in reactivity series	Product of electrolysis				
Metal more reactive than hydrogen	Hydrogen is produced at the cathode				
If the negative ion is not a halide ion (group 7)	Oxygen is produced at the anode				


Don't <u>PANIC</u> - <u>P</u>ositive is <u>A</u>node, <u>N</u>egative <u>I</u>s <u>C</u>athode.

Chemistry Topic 5: Energy changes

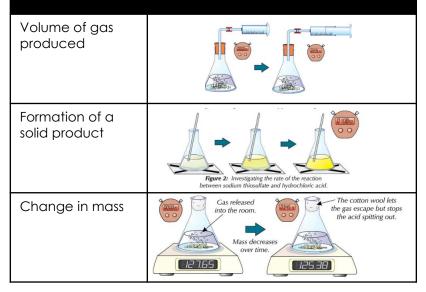
1. Keywords	
Conservation of energy	Energy can not be created or destroyed just transferred from one for to another
Exothermic reaction	Reaction which releases heat to the surroundings. Causing an increase in temperature
Endothermic reaction	Reaction which absorbs heat from the surroundings. Causing a decrease in temperature

2. Reaction profiles

3. Energy changes of reactions (HT ONLY)					
Reaction type	Temperature change	Amount of energy absorbed to break bonds	Amount of energy released when making new bonds		
Exothermic	Increases	Less	More		
Endothermic	Decreases	More	Less		

3

5


4. Cells and batteries (TRIPLE ONLY)				
Simple cell	Made from connecting two different metals in contact with an electrolyte			
Battery	Two or more cells joined together in series to make a greater voltage			
Non-rechargeable cell	Type of cell where the reactions stop when one of the reactants is used up. E.g Alkali batteries			
Rechargeable cell	Type of cell where the chemical reactions can be reversed when an electric current is supplied			
Fuel cell	Type of cell that makes electricity from reacting a fuel (eg Hydrogen) with oxygen			

Overall equation $2H_2 + O_2 \rightarrow 2H_2O$ Anode equation (HT ONLY) $4H^+(aq) + O_2(g) + 4e^- \rightarrow 2H_2O(g)$ Cathode equation (HT ONLY) $H_2(g) - 2e^- \rightarrow 2H^+(aq)$

Chemistry Topic 6: Rate of reaction

1. Keywords	
Rate of reaction	Amount of reactant used or product formed ÷ time
Collision theory	Idea that for a reaction to occur the particles have to hit each other with enough energy
Activation energy	The minimum energy needed for a collision to cause a reaction
Catalyst	A substance which speeds up a chemical reaction by lowering the activation energy
Reversible reaction	A chemical reaction that can go in either direction
Equilibrium	When the forwards and backwards reactions happen at the same rate

2	\M/m	$+ \sim$	modelino	the rate	ofragtion
∠.	VV Q VS	10	measure	merare	of reaction
	,				

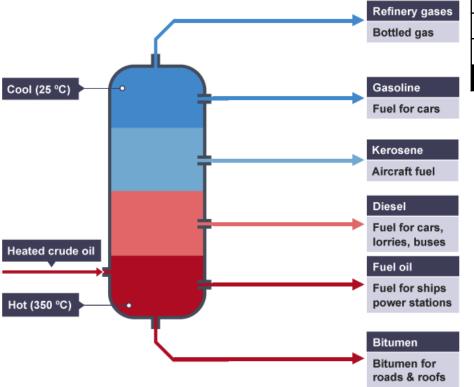
3. Calculating rates from graphs						
1	At start steep slope so fast reaction					
2	As slope becomes less steep reaction is slowing					
3	Flat line shows reaction has finished					
Amount of product formed	2 2 <i>Time</i>					

4. Factors affecting rate of reaction				
Factor	Change	Effect on rate	Reason	
Temperature	Increase	Increase	The particles are moving faster so collide more often and with a greater proportion of successful collisions	
Concentration	Increase	Increase	The are more particles so collisions are more frequent	
Surface area	Increase	Increase	There are more particles available so more collisions	
Catalyst	add	increase	The lower activation energy means more particles can successfully collide	

5. C	atalysts
1	Reactants
2	Products
3	Activation energy without catalyst
4	Activation energy with catalyst
Energ	By 1 3 4 2 Progress of reaction

6. T

The effect of changing	conditions on equilibriun	n (HT ONLY)	
A +2B	endothermic exothermic	C +D	


Le Charteliers principle: A reaction at equilibrium will act to oppose any change made to it				
Condition	Change	Affect		
concentration	Increase A or B Shifts right to increase the concentration C+D			
	Decrease A or B	Shifts left to increase concentration of A+B		
Temperature	Increase	Shifts right in favour of the endothermic reactions making more C+D		
	Decrease	Shifts left in favour of the exothermic reactions making more A+B		
Pressure	Increase	Shifts right to the side with the fewest moles so makes more of C+D		
	Decrease	Shifts left tot eh side with the most moles so makes more A+B		

Chemistry Topic 7: Organic chemistry

1. Carbon compounds as fuels and feedstock			
Hydrocarbon	A chemical made of only carbon and hydrogen		
Crude oil	A mixture of hydrocarbons found in rock		
Alkanes	Saturated hydrocarbons (without double bond)		
Alkene	Unsaturated hydrocarbon (with double bond). They turn bromine water from brown to colourless.		
Fractional distillation	A process of separating crude oil using the different boiling points of fractions		
Viscosity	How thick a liquid is		
Flammability	How easily a fraction catches fire		
Boiling point	The temperature at which a substance turns from a liquid to a gas		
Combustion	A reaction where a fuel is oxidised releasing heat energy		
Cracking	Breaking less useful long-chain alkanes into useful short-chain alkanes and alkenes		

2. Alkanes		
General formula	C_nH_{2n+2}	
Name	Molecular formula	Displayed formula
Methane	CH4	н н—с—н н
Ethane	C ₂ H ₆	н н н—С—С—н н н
Propane	C ₃ H ₈	H H H H
Butane	C ₄ H ₁₀	н н н н н—С—С—С—С—н н н н н

3. Fro	actional distillation	4. Properties of hydrocarbons	
1.	The column is cooler at the top than the bottom	Property	
2.	The crude oil is heated	Boiling point	
3	The fractions evaporate and rise up the column	Viscosity	
4	The fractions condense at different points according to their boiling point	Flammability	
5	The liquid fractions run off and are collected	5 Cracking	

4. Properties of hydrocarbons	
Property	Change as carbon change gets longer
Boiling point	Increases
Viscosity	Increases (less runny)
Flammability	Decreases

5. Cracking	
Type of cracking	Conditions
Catalytic	Hot (500°C) + catalyst
Steam	Very hot (850°C) + Steam
Short chain = desirable	Long chain = undesirable

6. Alkenes (TR	RIPLE ONLY)		7. Reactions of A	Alkenes (1	RIPLE ONL	Y)	
General formula	C _n H _{2n}		Reaction		Observation		
		1	Oxidation (incor combustion)			Burn in air to produce smoky flames	
Name	Molecular formula	Displayed formula	Addition			Double bond opens to form single bonds. Reacts with hydrogen, water and halogens	
Ethene C_2H_4 H H I I C = C		6. Alcohols (TRIF	PLE ONLY	<i>(</i>)			
		I I H H	Functional group	-OH			
Propene	C ₃ H ₆	H H H H-C-C=C	Name	Moleo formu		Displayed formula	
		н н	Methanol	CH ₃ 0	ЭН	Н Н-С-О-Н	
Butene	C ₄ H ₈	H H H H				I H	
		H-C-C-C=C H H H	Ethanol	C ₂ H	₃OH	H H H-C-C-O-H 	
Pentene	C ₅ H ₁₀	H H H H H	Propanol			ĤĤ	
		H-ċ-ċ-ċ-ċ=ċ H H H H	Fropanoi	C ₃ H	,OH	H H H H-C-C-C-O-H H H H	
			Butanol	C ₄ H ₅	,OH	H H H H H-C-C-C-C-O-H H H H H	

7. Fermentation of alcohols (TRIPLE ONLY)			9. Carboxylic ac	9. Carboxylic acids (TRIPLE ONLY)		
glucose <u>yeast</u> → ethanol + carbon dioxide			Functional group	-СООН		
C ₆ H ₁₂ O _{6(aq)} –	$C_6H_{12}O_{6(aq)} \xrightarrow{yeast} 2C_2H_5OH_{(aq)} + 2CO_{2(aq)}$			Molecular formula	Displayed formula	
8. Reactions of alc	ohol (TRIPLE ONLY)		Methanoic acid	НСООН	H-c=o	
Reaction	Observation	Uses			6 –н	
Combustion	Burns with a clean flame	Spirit burners, biofuels				
With sodium	Hydrogen bubbles given off. Metal skates around surface	N/A	Ethanoic acid	CH3COOH	H H-C-C=O	
Oxidation	Oxidising agent changes colour	Making carboxylic acids			H O-H	
L			Propanoic acid	C₂H₅COOH	H H H-C-C-C=O H H O-H	
			Butanoic acid	C ₃ H ₇ COOH	H H H H-C-C-C-C=O H H H O-H	

10. Synthetic and naturally occurring polymers (TRIPLE ONLY)		
Monomer	A small unit that joins together to make a polymer	
Polymer	A long chain molecule made of many polymers	
Synthetic	Man made	
DNA	Deoxyribosenucleic acid. Natural polymer that codes genetic instructions. Formed of nucleotides in a double helix	
Cellulose	Natural polymer made from glucose. Use in plant cell walls	
Starch	Natural polymer made from glucose. Use in plant cells as a food store	
Protein	Natural polymer made of amino acids. Used for growth and repair in cells. Also called a polypeptide.	

11. Addition polymerisation (TRIPLE ONLY)		
Monomer(s) Polymer		
Alkenes	Long-chain alkane	
H H n C=C − H H ethene	$ \begin{pmatrix} H & H \\ & \\ C - C \\ & \\ H & H \end{pmatrix} n $ poly(ethene)	

11. Condensation polymerisation (TRIPLE HT ONLY)		
Monomer(s)	Polymer	
Diol (2 alcohol) Dicarboxylic acid	Polyester (+ water)	
но—он ноос—соон	+ $ -$	

12. Amino acids (TRIPLE HT ONLY)	
Monomer(s)	Polymer
Amino acid	Polypeptide (+ water)
H O H H H I H I I I C OH H - N - C - COOH R R R water lost	H O H H I I I I H₂N − C − C − N − C − COOH I R R peptide link

Chemistry Topic 8: Chemical analysis

1. Keywords	
Pure substance	A single element or compound not mixed with any other substance. They have a specific melting and boiling point
Melting point	The temperature at which a solid turns to a liquid
Boiling point	The temperature at which a liquid turns to a gas
Formulation	A mixture that has been designed as a useful product eg fuels, cleaning agents, medicines and fuels
Chromatography	Use to separate mixtures and identify substances
Rf	distance moved by substance distance moved by solvent

2. Identification of common gases		
Gas	Test	Observation
Hydrogen	Burning splint	Squeaky pop
Oxygen	Glowing splint	Relights
Carbon dioxide	Limewater	Goes cloudy
Chlorine	Damp Litmus paper	Bleached (goes white)

3. Flame tests (TRIPLE ONLY)			
Metal ion		Colour	
Lithium (Li+)		Crimson	
Sodium (Na+)		Yellow	
Potassium (K+)		Lilac	
Calcium (Ca ²⁺)		Orange-red	
Copper (Cu ²⁺)		Green	
Flame emission spectro passed through a spec			and the light given out as in the sample
4. Metal hydroxides (Th	RIPLE ONLY)		
Metal ion	Observation with	addition of soc	lium hydroxide
Aluminium (Al ³⁺)	White precipitate	which dissolve	s in excess
Calcium (Ca ²⁺)	White precipitate		
Copper (Cu ²⁺)	Blue precipitate		
Iron II (Fe ²⁺)	Green precipitate	;	
Iron III (Fe ³⁺)	Brown precipitate		
5. Testing for negative ions (TRIPLE ONLY)			
Negative ion	Reagent		Observation
Carbonate	Add carboxylic acid		Fizzes releasing Carbon dioxide
Halide	Add silver nitrate		Cl ⁻ = white precipitate Br= cream precipitate l ⁻ = yellow precipitate
Sulfate	Add Barium Chloride		White precipitate

Chemistry Topic 9: Chemistry of the atmosphere

1. Composition of the earths atmosphere now		
79%	Nitrogen	
20%	20% Oxygen	
1%	Other gases including CO ₂	

2. Evolution of the atmosphere		
Time	Atmosphere reason	
4 billion years a go	Nitrogen, Carbon dioxide and water vapour (like mars)	Volcanic erruptions
	Nitrogen, Carbon dioxide decreases	Earth cools and water vapour condenses. Carbon dioxide dissolves into the oceans
2.7 billion years ago	Increasing oxygen decreasing carbon dioxide	Photosynthesising organisms evolved
	Reducing oxygen to modern levels	Animals evolved and began respiring the oxygen

3. Climate change	
Greenhouse gases	Gases which increase the temperature of the atmosphere Eg Carbon dioxide, methane, water vapour
Greenhouse effect	When excess greenhouse gases absorb and radiate IR radiation back to the earth warming it
Man-made climate change	The leading theory that human activities are causing an increase in global temperature
Carbon footprint	Total amount of carbon dioxide emitted over the life of a product, service or event
Global dimming	Particulates block the light from the sun slightly, reducing global temperature
Acid rain	Gases dissolve in rain causing damage to buildings, statues, lakes and trees

4. Atmospheric pollutants from combustion		
Pollutant	Source	Effect
Carbon dioxide	All combustion	Global warming
Carbon monoxide	Incomplete combustion	Toxic, breathing problems
Carbon particle (Soot)	Incomplete combustion	Breathing problems, global dimming
Sulfur dioxide	Burning sulphur, impurities in fossil fuels	Acid rain
Oxides of nitrogen	Vehicle engines	Acid rain

Chemistry Topic 10: Using resources

1. Keywords	
Finite resources	Resources that will run out
Renewable resources	Resources that can be re-grown or will not run out
Sustainable development	Building things with depleting natural resources
Potable water	Water that is safe to drink
Pure water	Water without anything added to it Eg 100% H ₂ O
Desalination	Removing salt by distillation or reverse osmosis
Sterilisation	Killing bacteria and microbes (eg chlorine, ozone or UV)
Distillation	Evaporation followed by condensation, uses a lot of energy
Reverse osmosis	A process using membranes to remove the salt. Uses a lot of energy
Effluent	Liquid waste sewage discharged into rivers and seas
Sludge	Solid sewage waste. Dried and used as fertiliser or burned to generate electricity
Life cycle assessments (LCAs)	A way of assessing the impact of the production transport use and disposal of a product on the environment

2. Waster water treatment		
	Name	Description
1	Screening	Solid waste and grit removed by a metal grid
2	Primary treatment	Sediments are allowed to settle out from the mixture
3	Secondary treatment	Bacteria feed on the remaining organic waste. The tank has air bubbled through it so aerobic respiration can occur
4	Final treatment	Bacteria allowed to settle out. Water is sterilised and ready to drink

3. Alternative r	methods of extracting metals (HT ONLY)
Phytomining	 Plants absorb metal compounds Plants are harvested and burnt Ash contains metal compounds
Bioleaching	 Bacteria absorb metal compounds Bacteria excrete a solution of metal called Leachate Electrolysis can extract the metal

4. Corrosion and its prevention (TRIPLE ONLY)				
Corrosion	Destruction of materials by chemical reactions. eg rusting			
Prevention method	Works by Examples			
Coating	Providing a barrier Greasing Painting Electroplating			
Sacrificial protection	Reacts with the oxygen instead of Galvanising by Zinc			

5. Alloys (TRIPLE ONLY)			
Alloy	Made of	Use	
Bronze	Copper and Tin	Coins and medals	
Brass	Copper and Zinc	Musical instruments	
18 carat Gold	75% gold, silver, copper, zinc	Jewellery	
Steel	Iron and Carbon	High carbon: Knives Low carbon: Bridges	
Stainless steel	Iron, Carbon and Chromium	Cutlery, medical instruments	
Aluminium alloys	Aluminium and Scandium	Planes	

6. Ceramics (TRIPLE ONLY)			
Ceramic	Made from	Use	
Glass	Heating sand, sodium carbonate and limestone	Windows Lenses	
Clay	Wet clay shaped and heated	Pottery Bricks	

7. Polymers (TRIPLE ONLY)			
Polymer type	Property	Crosslinks present	
Thermosoftening	Melts when heated	No	
Thermosetting	Does not melt, just burns	Yes	

8. Haber process (TRIPLE ONLY)			
Reaction	Nitrogen+Hydrogen \longrightarrow Ammonia N ₂ + 3H ₂ \longrightarrow 2NH ₃		
Raw materials	Hydrogen: from natural gass Nitrogen: from air		
Conditions	Temp: 450°C Pressure: 200atm Catalyst: Iron		

9. Making fertilisers from phosphate rock (TRIPLE ONLY)			
Reagent Product			
Sulfuric acid	Calcium phosphate + Calcium sulfate		
Nitric acid then ammonia	Ammonium phosphate		
Phosphoric acid	Calcium phosphate		

Notes page			

Notes page			

Notes page			

Y11 GCSE Exam Dates	Notes
Y11 Mock(s):	
Y11 PPE(s):	
Final GCSE(s):	
Success Programme Sessions:	
Revision Guide (if applicable):	